C	B3C053S	Pages: 3	
Reg. No.	eg. No. Name:		
	BDUL KALAM TECHNOLOGICAL UN MESTER B.TECH DEGREE EXAMINAT		
	EC203: SOLID STATE DEVICES (AE,	, EC)	
Max. Marks:100.		Duration: 3 Hours	
	PART A		
Answ	er any One from Qn. No.2 and 3. Qn. No.	1 is Compulsory.	
1. a) Plot the Fermi	Dirac distribution function versus Energy	for different temperatures. Justify	
the plot using ne	cessary equations.	(5)	
b) Show that L _n i	is the average distance an electron diffuses	before it recombines. (5)	
c) Derive the exp	pression for conductivity of a Semiconductor	or. (5)	
2. a) For the given	n data, calculate hole and intrinsic carrier	r concentrations. Also sketch the	
band diagram. N	$_{\rm C} = 10^{19} {\rm cm}^{-3}$, $N_{\rm V} = 5 {\rm x} 10^{18} {\rm cm}^{-3}$, $E_{\rm g} = 2 {\rm eV}$, T	$\Gamma = 900^{0} \text{K}, \text{ n} = 10^{17} \text{cm}^{-3}$ (5)	
b) Define Hall	Effect. Derive the expressions for i) n	majority carrier concentration ii)	
mobility.		(5)	
c) Prove that the	minimum conductivity of a semiconductor	or occurs when $n_0 = n_i (\mu_p / \mu_n)^{0.5}$	
Also find the expr	ession for minimum conductivity.	(5)	
	OR		
	vith minority electron lifetime of 0.1μs, is	s uniformly illuminated by a light	
having photon er	e rate of excess carrier generation that is	s required to generate a uniform	
•	ration of 10^{10} cm ⁻³ .	•	
	optical power (cm ⁻³) that should be abso	(2)	
population of par		(2)	
	optical power per cm ³ will be generate		
photoemission?	option power per one will be generate	(2)	
1	state diffusion equations.	(6)	
,	ain the different recombination mechanism	, ,	

C	B3C053S	Pages: 3

	PART B	
	Answer any One from Qn. No.5 and 6. Qn. No. 4 is Compulsory.	
4.	. a) Draw the energy band diagrams of a pn junction when it is i) under equi	librium ii)
	forward biased iii) reverse biased.	(6)
	b) Draw the energy band diagram of a metal-n type semiconductor with $\phi_m > \phi_s$	when it is
	i) under equilibrium and ii) when it is biased. Is the contact rectifying or ohm	nic? Justify
	your answer.	(6)
	c) What is the difference between depletion and diffusion capacitance in a dio-	de? Which
	one dominates in forward bias?	(3)
5.	 a) Derive the expressions for i) Contact potential ii) transition region width iii) value of electric field. b) A p⁺n Si diode has N_A=10¹⁵cm⁻³ and N_D=10¹⁷cm⁻³ area of cross section A=1 the lifetime in n and p regions be 1 μs at 300K. Determine the diode current voltage of i) V = 0.1V ii) V = 0.6V. Given D_p = 10cm²/s, D_n = 36cm²/s. c) What are the assumptions taken for the derivation of the general form of Diode 	(8) 0 ⁻³ cm ² and for applied (4)
	OR	(5)
6.	a) A Schottky barrier diode is formed by depositing tungsten on n-type Si. If N_D =	$= 10^{15} \text{cm}^{-3},$
	$q\phi_m$ = 4.9eV, $q\chi_s$ =4.15eV (electron affinity of silicon), at 300K, determine:	
	i) Built in Voltage ii) width of depletion region and iii) Maximum electric field.	(6)
	b) Draw and explain the characteristics of a tunnel diode.	(4)
	c) Derive the expression for the time variation of voltage across a p-n juncti	on as it is
	switched from forward bias to reverse bias condition.	(5)
	PART C	
	Answer any One from Qn. No.8 and 9. Qn. No. 7 is Compulsory.	
7.		e mode of
, .	operation. Give values of minority carrier concentrations in the three region.	(4)
	b) Define Early effect. What is its effects on I_c , I_B , α and β of a transistor?	(4)
	c) Draw the band diagrams for ideal MOS structure at i) equilibrium ii) accum	, í
	depletion and iv) Inversion.	(8)
	d) Draw the structure of a FINFET . Plot its output characteristics.	(4)

- 8. a) Derive the terminal current equations of a npn transistor. List the assumptions made for the derivation. (12)
 - b) Define with expressions i) Base transport factor ii) Emitter injection efficiency iii)
 Current transfer ratio iv) Base to collector current amplification factor. (8)

OR

- 9. a) Draw and explain the capacitance- voltage characteristics of an n-channel MOS capacitor. (5)
 - b) What are the effects of real surfaces on the threshold voltage of a MOS capacitor?

 Derive the threshold voltage equation of a real MOS capacitor? (10)
 - c) An n^+ -polysilicon gate n-channel MOS transistor is made on a p-type Si substrate with $N_a = 10^{15} \text{cm}^{-3}$. The SiO₂ thickness is 100Å in the gate region, at the onset of inversion. Find i) width of depletion layer and ii) V_T . Given ϵ_r of Si and SiO₂ are 11.8 and 3.9 respectively.
